Wreath Products of Permutation Classes

نویسنده

  • Robert Brignall
چکیده

A permutation class which is closed under pattern involvement may be described in terms of its basis. The wreath product construction X o Y of two permutation classes X and Y is also closed, and we investigate classes Y with the property that, for any finitely based class X, the wreath product X o Y is also finitely based.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Types of Inclusions of Innately Transitive Permutation Groups into Wreath Products in Product Action

A permutation group is innately transitive if it has a transitive minimal normal subgroup, and this subgroup is called a plinth. In this paper we study three special types of inclusions of innately transitive permutation groups in wreath products in product action. This is achieved by studying the natural Cartesian decomposition of the underlying set that correspond to the product action of a w...

متن کامل

Rooted Wreath Products

We introduce “rooted valuation products” and use them to construct universal Abelian lattice-ordered groups (with prescribed set of components) [CHH] from the more classical theory of [Ha]. The Wreath product construction of [H] and [HMc] generalised the Abelian (lattice-ordered) group ideas to a permutation group setting to respectively give universals for transitive (`-) permutation groups wi...

متن کامل

SgpDec: Cascade (De)Compositions of Finite Transformation Semigroups and Permutation Groups

We describe how the SgpDec computer algebra package can be used for composing and decomposing permutation groups and transformation semigroups hierarchically by directly constructing substructures of wreath products, the so called cascade products. transformation semigroup, permutation group, wreath product, Krohn-Rhodes Theory

متن کامل

Wreath Decompositions of Finite Permutation Groups

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding 'imprimitive wreath decomposition concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The r...

متن کامل

Deciding the finiteness of simple permutations contained in a wreath-closed class is polynomial∗

In [8], D. Knuth introduced pattern avoiding permutation classes. Theses classes present nice combinatorial properties, for example 231 avoiding permutations are in one-to-one correspondence with Dyck words. It is then natural to extend this enumerative result to all classes and compute, given B a set of permutations, the generating function S(x) = ∑ snx n where sn is the number of permutations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2007